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Executive Summary 
Classical designs are a common starting point for the design phase of testing. A full factorial design is a 
simple systematic design style that allows for estimation of main effects and interactions. This design is 
very useful, but requires a large number of test points as the levels of a factor or the number of factors 
increase. Assessing the tradeoff between budget and the information gained in a full factorial design is 
an important consideration to take into account. However, the full factorial design does have a number 
of properties that make it very powerful. This paper discusses how to design an effective full factorial 
design and describes when it is appropriate to use. Additionally, a demo using the statistical software 
package JMP provides an example. 

Keywords: Randomization, blocking, main effects, interactions, experimental design, JMP 

Preface 
Design is a key step in the Scientific Test and Analysis Technique (STAT) process; however, it is important 
that the steps leading to this phase are followed properly to ensure meaningful results. Before designing 
a test, the system must be appropriately decomposed and a list of factors and responses should be 
generated. Additionally, constraints (of which some will be discussed in this paper) must be identified in 
order to choose the best design option. For more information on the STAT process, see our “Guide to 
Developing an Effective STAT Test Strategy” on our website www.afit.edu/STAT (Burke et al. 2018). 

Introduction 
Testing incorporates four distinct phases: Plan, Design, Execute, and Analyze (see Figure 1).  

 

Figure 1: Four Distinct Testing Phases 

http://www.afit.edu/STAT
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The Plan phase is crucial for identifying the test objectives, responses and factors, as well as their ranges 
and levels, and the size of a test design that is feasible for execution. A good design relies on an 
informed planning phase and seeks to balance the tradeoffs among budget, risk, and information 
gained. A classical design is a common starting point test design construction. Classical designs include 
full factorial and fractional factorial designs.  A special case of the full factorial design is the 2𝑘𝑘 factorial 
design, which has k factors where each factor has just two levels.  A full factorial design consists of all 
possible factor combinations in a test, and, most importantly, varies the factors simultaneously rather 
than one factor at a time. Using this approach, the tester can examine both main effects (effect of the 
independent variables on the dependent variable) and interactions (effect of the interaction between 
independent variables on the dependent variable) associated with both categorical and continuous 
factors.  The number of effects in a 2𝑘𝑘 factorial design: 

• k main effects 

• �𝑘𝑘2� = 𝑘𝑘(𝑘𝑘−1)
2

 2-factor interactions 

• �𝑘𝑘3� = 𝑘𝑘(𝑘𝑘−1)(𝑘𝑘−2)
6

 3-factor interactions 

• �𝑘𝑘𝑛𝑛� = 𝑘𝑘!
𝑛𝑛!(𝑘𝑘−𝑛𝑛)!

 n-factor interactions, 𝑛𝑛 ≤ 𝑘𝑘 

• 1 k-factor interaction 

However, full factorial designs do require a larger sample size as the number of factors and associated 
levels increase. For these reasons, full factorial designs may allow you to estimate every possible 
interaction, although you are probably only interested in two-factor interactions or possibly three-factor 
interactions.  Lastly, this design may not be the best approach when there is a strict limit on the number 
of test runs due to constraints such as time, cost, resources, the number of factors and levels, and 
randomization. However, it can be useful to utilize general factorial designs in limited circumstances 
such as dealing with multi-level categorical factors or when the experiment only has two to three 
factors.  While other full factorial designs such as a general factorial design do exist, this paper discusses 
the 2𝑘𝑘 factorial design. 

Factorial Basics 
A 2𝑘𝑘 factorial design follows a pattern that captures every possible combination of factor and level in 
the design matrix. This approach builds a model that estimates all of the main effects and each 
interaction. Table 1 shows an example 2𝑘𝑘 factorial design of three factors, each with two levels, coded 
as low (-) and high (+). 
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Table 1: 𝟐𝟐𝟑𝟑 Full Factorial Design Matrix 

 

Replacing the coding with actual values for any specific test is straightforward. For instance, if one of the 
factors in the design was distance that ranged from 500 to 1000 feet, then the “-” level would be 500 
feet and the “+” level would be 1000 feet. The order created using the systematic pattern shown above 
is standard order.  This ordering scheme introduces one factor at a time and then combines with the 
factors preceding it. In practice, randomize test execution to ensure independence and guard against 
hidden factors. Failure to randomize may identify significant factor effects that are actually due to 
uncontrolled variables. The visual representation of the design space for a 23 factorial design is a 
geometric cube where the test points are “mapped” to each corner of the cube. Figure 2 provides a 
graphical representation of this cube with coding “-1” for the low setting and “1” for the high setting of 
each factor. 

 

Figure 2: 𝟐𝟐𝟑𝟑 Full Factorial Design 
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The properties of the 2𝑘𝑘 factorial design matrix are: 

• Every column has an equal number of - and + signs (low and high settings) 
• The sum of the product of signs in any two columns is zero (called the orthogonality property) 
• Multiplying any column by 1 leaves that column unchanged (identity property) 
• Product of any two columns yields a column that can calculate the effect of another term (for 

example, 𝐴𝐴 × 𝐵𝐵 = 𝐴𝐴𝐵𝐵) 

Properties 
The three primary properties of all factorial designs are estimable model terms, projection, and 
orthogonality.  Using a factorial design, the experiment examines all possible combinations of levels for 
each factor.  Since every combination of factor and level is included in the 2𝑘𝑘  factorial design, the 
23 design consists of unique columns for every main effect, every two-factor interaction effect and the 
three-factor interaction effect. Larger values of k will include many more interactions from two-factor all 
the way up to a k-factor interaction. Table 2 lists all main effects, two-factor interactions, and the three-
factor interaction effects for the 23 factorial design. 

Table 2: 𝟐𝟐𝟑𝟑 Factorial Design with Interactions 

 

The projection property states that factorial designs “project” into replicated factorial designs in lower 
dimensions. The STAT COE Best Practice, “Classical Designs: Fractional Factorial Designs” discusses this 
particular topic in more detail (Natoli, 2018).  Figure 3 shows a 23 factorial design (factors A, B, and C).    
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Figure 3:  𝟐𝟐𝟑𝟑 Factorial Design 

If one of those factors is insignificant, the design can collapse on the insignificant factor (see Figure 4). 
This process then allows for replicates of the remaining factors. This property is particularly useful for 
sequential testing, where follow-on testing has been planned.  

 

Figure 4:  Three-factor Projection 

All 2𝑘𝑘 factorial designs are also orthogonal designs. Orthogonality means the model terms are 
uncorrelated with one another and therefore estimated independently of each other.  This feature helps 
clearly determine which factor affects the response. Without orthogonality, the process to determine 
which factor is truly contributing to the response is more complex. Having the design matrix contain all 
possible combinations of factors and levels in your test provides orthogonality and: 

• A balanced, symmetric design 
• Independent estimates of main effects and ALL interaction effects 

o Zero correlation between estimates of the effects 
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o When removing one effect from the model, the estimates of remaining effects are 
unchanged 

• The ability to project into more effective designs when insignificant effects exist 

24 Factorial Design Matrix  
Table 3 shows an example of a 24 factorial design. The table consists of plus and minus signs and 
includes columns for every main effect, two-factor, three-factor, and a four-factor interaction effect. All 
model terms (the main effects of each factor and all interactions) could be estimated with this design. 
Typically, however, main effects and two-factor interactions are sufficient to describe the variability in 
the measured response. The table highlights the factor settings of the executable design in blue. 

Table 3:  Design and Model Matrix – 4 Factors 

 

 
A factor must have at least two levels in order to determine whether changing that factor causes a 
change in the response. However, additional factors and factor levels rapidly increase the size of the full 
factorial design. This is often the downside to this design approach. When a test has more than four 
factors, a full factorial design may contain more runs than necessary. 
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Testing for Curvature 

Center Points 
Unfortunately, 2-level designs assume the effect of the factors on the response is linear, which may not 
be a good assumption.  To estimate a line, two points are necessary; whereas to estimate a curve, three 
points are required (see Figure 5).   

 

Figure 5:  Points Required Estimating a Line and Curve 

However, the tester can add center points to the original design to test this assumption. Center points 
are additional test points where each factor is set to the midpoint of its range. In coded units, this 
means that every continuous factor is set to 0. For example, Figure 6 shows all of the possible 
combinations of a 24 factorial design where all factors are continuous. The red points in the figure 
represent the center points, which can be used to determine whether the assumption of linear effects 
on the response is reasonable.  

 

Figure 6: 𝟐𝟐𝟒𝟒 Full-factorial Design with Center Points 

When the test contains categorical factors, you must use pseudo-center points since there is no 
“midpoint” for a categorical factor. For example, in a 23 design with two continuous factors and one 
categorical factor (see Figure 7), we can add two center points at one level of the categorical factor and 
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two center points at the other level of the categorical factor. Since Location is a categorical factor, there 
is no halfway point along a categorical axis, so pseudo-center points are required. When adding pseudo-
center points, keep the number of continuous center points balanced for each level of the categorical 
factor. 

 

Figure 7: Center Points and Qualitative Factors 

Center points are useful to include in the initial design or as an augment (addition after initial testing) to 
the design if a linear model does not fit well.  Typically, place center points non-randomly. Put a center 
point at the beginning, middle and the end of the experiment to assist in checking for some systematic 
bias or drift in the response value. In addition to checking for curvature (explained in the next section), 
there are several additional practical uses of including center points in the design, including: 

• Use current operating conditions as the center point for a baseline response 
• Check for “abnormal” conditions during the time the experiment is conducted 

o This checks to make sure system performance is as expected on a given day 
• Check for time trends 

o Spacing the center points at the beginning, middle, and end can show a difference due 
to time 

• Check for non-linearity in the response (discussed in the next section) 
• Use in first few runs (there is little or no information available about the magnitude of error) 

o This provides an estimate for the “noise” in the system that can be used for sizing a 
design 

Checking for Curvature 
Adding center points to a two-level design provides an estimate of pure error and the ability to test for 
lack-of-fit. Pure error is due to variability in the measurement of the dependent variable and is one 
component of the residual error.  Subtracting the pure error from the residual error estimates in lack-of-
fit of the model.  The lack-of-fit test compares the average response of the center points with the 
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average response of the factorial points (see Figure 8). A significant difference between the two point 
values indicates the linear model is inadequate, clearly demonstrating significant lack-of-fit. When there 
is significant lack-of-fit, the model is not sufficiently capturing the variability in the response. There is 
behavior in the response that is not being explained by the current model.  

 

Figure 8: Checking for Curvature 

Adding center points to a two-level design does not allow estimation of specific quadratic effects; we 
cannot determine which factor has a quadratic effect on the model. However, center points do provide 
an indication if any quadratic terms are needed in the model. To adjust the model, additional test points 
would need to be executed in order to determine which factor(s) have a quadratic effect on the 
response. We recommend including three to five center points in the design to test for curvature. 

DOE Fundamentals 
DOE has three foundational principles: randomization, replication, and blocking. We discuss how to 
implement these three principles when executing a 2𝑘𝑘 design in the following subsections.  

Randomization 
The first principle, randomization, executing test runs in a random order, supports the use of statistical 
methods. Randomly ordering the actual experimental runs helps to validate the assumption of 
independently distributed observations (Montgomery, 2017). Randomization is one of the easiest ways 
to control for noise in an experiment. Randomizing protects against known and unknown events 
happening in the background, neither of which are controllable. Executing runs in random order helps 
“average out” the effects of “lurking” variables, which improves the estimation of the effects of the 
other factors. Figure 9 shows all possible combinations of three factors at two levels each. The first 
approach shows standard order with a structured sequence. This approach can have outside influences 
over time, while using a randomized order averages out outside influences.  For instance, because the 
“C” factor is not changed randomly, being able to determine whether a change in the response was due 
to changing the “C” factor levels or due to some outside lurking variable is not possible. 
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Figure 9: Standard and Random Run Order 

Important to note is if you cannot fully randomize the runs because it is too expensive or time intensive 
to do so, a 2𝑘𝑘 design is not the best test strategy. Other statistical design approaches are available to use 
in these circumstances (Montgomery, 2017). 

Replication 
The second foundational principle of DOE, replication, is repeating each factor/level combination 
independently of any previous run. Two significant attributes of replication are being able to determine 
an estimate of the experimental error (used to decide if noted differences in the data are actually 
statistically different) and a more precise estimate of the actual parameter value (Montgomery, 2017). 
Without replication, determining why two data points differ is not possible.  As previously discussed, a 
2𝑘𝑘  factorial design can support a model with 2𝑘𝑘 − 1 = 𝑛𝑛 − 1 terms (the intercept term, main effects, 
and all interaction terms). Model terms are estimated at the cost of a run, which means that you will 
need more runs than model terms in order to estimate the effects and determine whether the effect is 
statistically significant or not.  The number of runs in the design must be greater than the number of 
parameters in the model in order to perform hypothesis testing on each model parameter. Consider 
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using replication in order to perform hypothesis tests, obtain an estimate of “pure error”, and increase 
the power of the design. 

Blocking 
Blocking is the third DOE principle used to minimize or remove potential variability due to a known 
nuisance factor. This planning and analysis technique sets asides (blocks out) unwanted and known 
nuisance variability. The benefit of incorporating a blocking approach is reduced experimental error, 
which in turn increases the power to identify the impact of test conditions. If the nuisance factor is a 
source of noise, blocking will reduce the influence. By not blocking on a nuisance factor, detecting 
whether a factor is significant becomes more difficult. Replacing replicates with blocks and then 
randomizing within each block is a Randomized Completed Block Design (RCBD). Each block contains a 
complete replicate of the factor setting. Randomizing in this manner maintains the orthogonality of the 
factors (see Figure 10). 

 

Figure 10: Blocking a replicated 2k design 

When you cannot afford replicates, you must sacrifice the ability to estimate a high order interaction in 
order to account for the blocking effect. Consider a 24 factorial design. Construct two groups of eight, 
choosing blocks confounded (meaning the tester will not be able to differentiate that effect from the 
blocking effect) with the highest-order interaction “ABCD” (see   
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Table 4). Place all “+1s” of the highest order interaction in one block and all “-1s” of the same 
interaction in the other block. After constructing both blocks, randomize the run order within each 
block. 
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Table 4: Four-factor Full Factorial Design 

 

When blocking an un-replicated design, at least one model term will be confounded with the block. The 
sparsity of effects principle states a subset of main effects and low-order interactions dominate most 
systems. In other words, main effects and two-factor interactions typically account for most of the 
variability in the response. Higher order interactions (like 3-factor or 4-factor interactions) are rarely 
needed to explain the response. When blocking, ensure the highest-order interaction effect or an 
interaction believed not to be significant is confounded. This approach ensures systematically designed 
tests for all blocks to facilitate estimates of effects within each block.  

Conclusion 
This paper discussed the power of full factorial designed experiments, their tradeoffs, and 2𝑘𝑘 designs. 
Randomization, replication, and blocking are the three foundational DOE principles. A full factorial 
design test is useful for estimating main effects and interactions by varying the factors together, but can 
grow large with an increasing numbers of factors. These designs have a number of properties that allow 
for effective model building. A full factorial design is a good starting point for design discussion and can 
serve as a baseline design in a number of different test scenarios. Use general factorial designs in rare 
cases such as having categorical factors or only having two to three factors.  Avoid using the full factorial 
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design if the number of runs is restricted, design region constraints exist, or the number of factors is 
more than four.   
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JMP Demo 
This example will create a 24 factorial design for a test with one categorical and three continuous factors 
using JMP V. 13. The categorical factor is Aircraft and has two levels (F-22 and MQ-9). The continuous 
factors are Standoff Distance (nautical miles, 5, 10), Map Resolution (dots per inch (dpi), 300, 1200), and 
Target Speed (knots, 10, 30). The response is Time to Locate (seconds) and the goal is to “Minimize” the 
response Time to Locate. 

1) Select “DOE -> Classical -> Full Factorial Design”. 

 

2) Enter the factors into the factor section. 
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3) Update the Response Name to “Time to Locate” and the goal to “Minimize”, and then select 
“Continue”. 



STAT COE-Report-35-2018 

 
 

 Page 
19 

 
  

 

4) The number of runs will be 24 = 16  with no center points (although you could add replicates or 
center at this menu if desired). Be sure to select Run Order as “Randomize” and then click 
“Make Table”. Remember, always randomize! 
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5) The design table shows the settings for each of the factors in each run. A column for the 
response is included which you can fill in as you execute the test.  

 

6) To view correlation between any two effects, select “DOE -> Design Diagnostics -> Evaluate 
Design”. 

 

7) Load the factors into the “X, Factor” box and select “OK”. 
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8) Scroll down and select the drop down next to “Color Map on Correlations”. Note that because 
there is blue all in the off-diagonal, there is no aliasing of effects in this design. This means the 
design is orthogonal (as expected) and we will be able to estimate each model term.  Also, note 
there are four main effects, six two-factor interactions, four three-factor interactions, and one 
four-factor interaction. 
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9) If additional runs are required (possibly some center points), from the design data table, select 

“DOE -> Augment Design”. 
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10) Load all of the factors into the “X, Factor” box and the response “Time to Locate” into the “Y, 
Response” box. Select “OK”. 

 

11) Select “Add Centerpoints”. 
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12) Enter the number of centerpoints (for this example, 2 are added), then select “OK”. 

 

13) Next, select “Make Table” 

 

14) The new augmented design table now has 18 runs. The first 16 runs represent the original 
factorial design with the additional center points added at the end. 
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